Knowledge

- Add the mass numbers of all the atoms in the compound
- 2. 16 53.5
- 3. The atomic or formula mass in grams
- 4. 6.02×10^{23}
- 5. The reactant that is in the shortest supply ie gets used up first
- 6. It stays the same/is conserved
- 7. Solid, liquid, gas, aqueous solution
- 8. Mass = Mr x moles
- 9. 1000
- 10. Concentration = mass / volume

Application

1. (40/111 x 100) – 36% 2. 23+19 = 42 42x5 = 210g3. 1 mole = 2g. Moles = mass/Mr 20/2 = 10 moles $2K + I_2 \rightarrow 2KI$ 4. 78 254 332 ÷332 x 50 ÷332 x 50 11.75g

Step 1: write the equation	HBr +	$H_2SO_4 \rightarrow$	H ₂ O +	- SO ₂ +	Br ₂
Step 2: Write the experimental masses under the equation	1.62	0.98	0.36	0.64	1.60
Step 3: Write the mass of <u>one mole</u> for each chemical under the equation	81	98	18	64	160
Step 4: Calculate the number of moles of each chemical in the experiment (experimental mass ÷ formula mass)	0.02	0.01	0.02	0.01	0.01
Step 5: Convert into simplest ratio Cancel down fully	2	1	2	1	1
Step 6: Write the balanced equation	2HB	$r + H_2SO_4$	→ 2H ₂ O	+ SO ₂ +	Br ₂

- a) $CaCO_{3 (s)} + 2 HCI_{(aq)} \rightarrow CaCI_{2 (aq)} + H_2O_{(1)} + CO_{2 (g)}$ b) In equation
- c) Stops acid spraying out of the flask (NOT the gases)
- d) Uncertainty = range /2 range 8.6-8.2 = 0.4

0.4/2 = 0.2

So uncertainty = 8.4g + - 0.2g

6.

7. C= M/V
Remember volume needs to be in dm³
So 200/1000 = 0.2
C= 35/0.2 = 165g/dm³